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Finite difference'calculations of eigenvalues for various 
potentials 
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Received 24 April 1991, in final form 30 August 1991 

Abstract. The energy levels of the Schrbdinger equation for the potentials V ( x ) =  
&N=2hiN.x2N,  V ( ~ ) = - ~ ' X * + X "  and V ( r ) = x i + A ~ 2 N / ( I + ~ ~ 2 ) ,  with ZN= 
4.6,s..  . . , l a ,  20, have been calculated by using a finite difference method for various 
values of A and the quantum number n. The obtained results are compared with previously 
available results. 

1. Introduction 

The aim of this paper is to calculate the eigenvalues for various forms of potential in 
one dimension by using finite difference methods. The potentials considered are 

20 

2 N - 2  
V ( x ) =  1 A 2 , d N  2 N  =4,6,8,10, .  . . , 18,20 ( 1 )  

V ( x )  = -Z2x2+x" 2N =4,  6,8, 10, 12 (2) 
V ( x )  =x'+Ax2N/(1 +gx2) (3 )  

The study of the quantum mechanics of the anharmonic oscillator is of considerable 
interest from both physical and mathematical points of view, and a variety of techniques 
have been employed to calculate energy eigenvalues. The one-dimensional anharmonic 
oscillator with the potential given by equation (1) has been studied intensively in the 
past by various authors using several powerful methods. The most studied system of 
this kind is the quartic anharmonic oscillator (2N=4). Bender and Wu (1969) calcu- 
lated 75 terms of the ground state energy series. Simon (1970) studied the analytic 
properties of the series and its Pad& approximants. Banerjee (1978) calculated energy 
levels for 2N = 4.6,s and lo-'= A S 4 x  lo', for various state numbers n. Schiffrer and 
Stanziai (lYS5) have reported accurate energy caicuiations for the ground state and 
first excited state for 2 N  =6,8,  10, 12 and A s lo6 by using a gradient method. 
Killingbeck (l979,1987a, b, 1988) presented several perturbative and non-perturbative 
numerical methods which gave results of good accuracy. Witwit (1989) applied renor- 
malized series and power series methods for different values of A, 2N, n and obtained 
results of high accuracy. 

The anharmonic oscillator (1) of the type V ( x ) = X : N - 2 A Z N ~ 2 N  can serve as a 
useful model in certain situations of physical interest. I t  has been used in calculations 
of the vibrational spectra of molecules (Lister er a/ 1978) and in a description of the 
behaviour of a 'He-'He mixture and of metamagnets near the tricritical point (Carvalho 
1977). Fiessas (1979) and Fiessas and Das (1980) have presented some exact solutions, 
valid for particular A m  values, including positive and negative values of A 4 .  Chaudhuri 
and Mukherjee (i984) nave Found a ciass of exact even and odd parity soiutions to 

0305-4470/92/020503+ 101604.50 0 1992 IOP Publishing Lid 503 

2N =4, 6,8, 10,. . . , 18,20. . 
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the Schrodinger equation for the same potential when A , ,  A.,, A6 satisfy some specific 
relations. In the present work we tackle the problem in its full complexity, calculating 
the eigenvalues for different values of h2N2N = 2,4 ,6 ,8 ,10  with high accuracy. 

The solution of the Schrodinger equation for the asymmetric double-minimum 
potential given by equation (2) would he interesting and has not yet received much 
attention. The most studied system of this kind is the quartic double-well potential 

an appropriate scaled harmonic basis to compute the energy eigenvalues for 2 N  =4, 
O < Z 2 S  100 and O s  n S 2 1 .  Quick and Miller (1984) treated the case 2 N  = 4 ,  Z2=50 
and 0 s  n s 7 9 ,  also using matrix diagonalization to calculate some energy levels. 
Fernandez ef al (1985) applied a simple iterative solution of the Schrodinger equation 
for a double-well potential and produced results with very good accuracy for two state 
numbers ( n = O i  1 )  and different values of Z ( 0 s Z 2 s 1 0 ) .  Killingbeck (1988) used 
finite difference calculations jnvolvjng the expectation values of Boolean functions, 
which are shown to yield detailed i,nformation about the properties of the energy levels 
and eigenfunctions for the double-well potential. Witwit (1989) used perturbative and 
non-perturbative methods to calculate the energy levels for wide ranges of parameters 
Z 2 ,  2 N  and state number n. 

There are.a variety of techniques which have been employed to calculate and to 
investigate the eigenvalue problems for potential (3). Most of the calculations have 
been devoted to the potential given by equation (3) for 2 N  = 2. However, as far as we 
know the other power indices (2 N = 4,6 ,8 ,  , . . , 18,20) have not been widely studied. 
We have been unable to find a reference in the literature dealing with the other types 
of potentials. 

The potential given by equation (3) for 2 N = 2 has recently been studied by many 
authors using different techniques. Mitra (1978) calculated the ground state and first 
two excited states using the Rayleigh-Ritz variational method in combination with a 
Givens-Householder matrix eigenvalue algorithm. Galicia and Killingbeck (1979) used 
the finite difference method to compute the energy eigenvalues for the three lowest 
even-parity states. Fack and Vanden Berghe (1985, 1986) and Fack et al (1987) used 
the finite difference method in Combination with matrix diagonalization for a numerical 
computation. Fack et al (1986) applied an operator method based upon the S0(1 ,2)  
dynamical group and gave very accurate results for different values of A, g and the 
state number. Hodgson (1988) applied an analytic continuation technique with a Taylor 
series to produce eigenvalues for wide ranges of perturbation parameters (0.1 6 g, 
A s  IO2) and state number n, obtaining results of high accuracy. A set of exact solutions 
has been found by Flessas (1981) under the conditions A < O  and A = A(g). Whitehead 
er al (1982) have proved the existence of a class of exact eigenvalues, when certain 
algebraic relations between A and g hold. Gallas (1988) has shown an exact analytical 
eigenfunction for the potential when the relationship A = -(6g2+4g) holds. The interest 
in this type of potential arises in several areas and these have been summarized by 
Mitra (1978). In particular, this type of potential occurs when considering models in 
laser theory. 

(2 .N=q1 Fer ins!ar?cP, Ba!%? e? rrl (1983) used z ma!rix diagana!lzation method with 

2. Formulation of the finite difference method 

Recent times have seen the development of various non-perturbative methods of 
computing energy eigenvalues. Such methods are necessary since the perturbative 
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methods provide insufficient information about accuracy and give convergence difficul- 
ties. Witwit (1989) has applied non-perturbative methods such as finite difference and 
power series methods to various eigenvalue calculations, using cross-checking of the 
results from various methods to establish confidence in the accuracy of the methods. 
The theory of the finite difference approach to find eigenvalues for the Schrodinger 
equation 

(4) 

with potentials given by equations (1)-(3) usually starts from the central difference 
operator, which can be expressed as 

h D l 2  - e - h D / l  S = e  

= 2 sinb(hD/2) ( 5 )  

where 

d D=-  
dx 

and h is the strip width for the numerical integration. From expression ( 5 )  it is easy 
to derive the relation which is used by Fack and Vanden Berghe (1985) to calculate 
their results. From equation (5) we obtain the following relation after squaring both 
sides of the expression: 

From equation (7) it is easy to obtain the result 

The operator expansion given by equation (8) is the one applied by Fack and Venden 
Berghe (1985) to derive the formulae used in their approach. If we square both sides 
of equation ( 5 )  and multiply by the wavefunction $(x), then equation ( 5 )  takes the form 

S2$(x) = 4  sinh2(hD/2)$(x) =Z[cosh(hD)- l]$(x). 

S2$(x) = h 2 D 2 ' P ( x ) + ~ h 4 D 4 Y ( x ) + ~ h 6 D ' ( ' P ( x ) .  . . . 

(9) 

(10) 

If we expand the cosh(hD) function, equation (9) takes the form 

In order to use the Schrodinger equation (4) in equation (lo), we divide equation (10) 
by h2, so that equation (10) becomes 

h-*S2$(x) = D 2 ' P ( x ) + i l h 2 D 4 Y ( x ) + ~ h 4 D 6 Y ( x ) .  . . . (11) 
Replacing D2 by V(x) - E in equation ( 1  1) gives 

h - ' S 2 $ ( x ) = ( V ( ~ ) - E ) \ I I ( ~ ) + h h 2 D 4 ' P ( ~ ) + ~ h 4 D 6 Y ( ~ ) .  . .  . (12) 

If we expand the wavefunctions 'P(x + h) and 'P(x - h )  by using Taylor series we obtain 

$(x+ h) = 'P(x) + hD'P(x)+fh2D2'P(x)+~h3D3Y(x)+~h4D4Y(x) 
+hh5DS'P(x)  +&h6D6Y(x)  (13) 
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@(x - h) = Y(x) - hD'P(x)f:h2D2Y(x) -~h3D"Y(~)+hh4D4W(x)  

-&hSD5Y(~)+&h6D6Y(~) .  (14) 

Adding equations (13) and (14) and using equation (10) we obtain 

S*Y(x) ='P(x+ h ) + Y ( x -  h)-2Y(x) 

= h2D2Y(x)+~h4D4'P(x )+&h6D6Y(x)+ .  . . . (15) 

Equation (12) differs from the Schrodinger equation in the form D'Y(x)= 
(V(x)- E)Y(x) by having perturbing terms V, =&h2D4Y(x) and V2=&h4D6W(x). 
The first term produces an energy shift and this shift would be the expectation value 

AE, = Y(x)V,Y(x) dx=&h2 Y(x)D4Y(x) dx. (16) 
tm +m I-- I-- 

The integral can easily be evaluated by parts to yield 

&h'((E - V)') =&h'( V(x)- E)* (17) 

which means that the local operator (V(x)- E)2 gives the same effect on the energy 
as the operator D4. The calculation of the effect of V2=&h4D6Y(x) is more difficult 
than the perturbation V, term 

tm 

(18) 

However, for Dirichlet boundary conditions and non-singular potential the term AE2 
can be expressed as 

(19) 

Our results show that the term involving h4D6 is not easy. However, for our calculations 
we used a very small value of h (h = for which the higher terms h Z N  D2"+" 
( N  = 2 , 4 , .  , .) in the expansion do not make any appreciable difference to the accuracy. 

PE 2-360h -1 4 Y(x)D6Y(x) dx. I-- 
A E 2  = V, =&h4( V(x) - E)'+&,h4(DV(~))2.  

If we use the quantity S(x) which is defined as 

Y(x+ h) = (1+ h2S(x))Y(x) (20) 

in equation (15) and combine equations (9) and (19 ,  the following equation is obtained: 

S(x-h) 2 
l+h2S(x -h )  h 

S(X) = +,[cosh(hlDl)- 11 

where D = J V ( x ) - E .  If D<O, equation (21) takes the form 

S(x-h)  2 
S(x) = +? [cos(h\D\) - 11. 

l+h2S(x-h)  h 

For even states we have 

Y(- h) = Y ( h )  

which leads to the starting conditions 

S(O)=i(V(O)- E).  

To apply equations (21) and (22) we need some initial value for S(x) and can then 
calculate successive Sex) values along the x-axis, with some test energy E. The 
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wavefunction *(x) is calculated using equation ( 2 1 )  or equation ( 2 2 )  for two trial 
energies E, and E, .  We suppose that E,> E., so that (V,) has its nodes earlier than 
Vm. Then the calculation of the projected energy is given as 

E ,  is actually a function of x; it is the interpolated energy which would have given 
V(x) = 0. As x increases, however, E, settles down to a limiting value, provided that 
Eb - E,  is not too large. This limiting energy corresponds to the boundary condition 
V(a) = 0. The true energy is related to the calculated energies for varying strip widths 
h by a formula of the type 

E ( h )  = E,+ h2E,+ h4E4+. . . . (26)  

The results for E as obtained using three values ( h ,  2h,  4 h )  can be treated by the 
Richardson extrapolation process, giving the results 

E 0 = & ( 6 4 E ( h )  - 2 0 E ( 2 h )  + E ( 4 h ) ) .  (27) 

Here E ( h )  is the energy calculated using strip width h and Eo is the exact energy (for 
h + O ) .  In the present eigenvalue calculated using strip width h and E, is the exact 
energy (for h + 0). In the present eigenvalue calculations, we used the above relations. 
The error of the method used here should be smaller when a smaller h (step length) 
is used. The wavefunction V ( x )  can be restricted to the region [0, +m]. Furthermore, 
we shall suppose that the wavefunctions are restricted to obey the Dirichlet boundary 
condition "(x) = 0 at some x-value (x = R). An acceptable R-value will be guessed 
numerically. The interval [0, RI is subdivided into equal parts of length h, with x = kh 
( k = O , 1 , 2  ,..., n ; n h = R ) .  

3. Expectation value calculations (x'"> 

In the present paper we have found a further application for the energy eigenvalues 
by calculating the expectation values without using wavefunctions. To find expectation 
values of the type ( x Z N )  for potential (1) for the case 2 N  = 4, 

V ( x )  = x2+Ax4 ( 2 8 )  

we need to have the eigenfunction "(x) for all x if we wish to apply the definition 

( x Z N )  I V 2 ( x ) x Z N  d r  (29) 

To find *(x) for arbitrary x and for any state number ( n  =0, 1 , 2 , .  . . ,9 ,  lo), is not 
easy, However, Killingbeck (1979) has applied a very simple perturbative numerical 
algorithm for the calculation of an expectation value, based on the formula 

1 
P - 0  2 E  

(x2N)=lim -( E ( H +  - E ( H  - E X " ) ) .  (30) 

This algorithm demonstrates that expectation values can be determined by an approach 
based on eigenvalue calculations, without the explicit use of wavefunctions. The way 
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in which we can calculate is as follows. We do two calculations, to get two E values, 
with included in the potential: 

E,=x2+Ax4+ 

E- = X2 + AX4 - 

1 
2 E  

( X 2 N )  =- ( E ,  - E - ) .  

We have performed various numerical checks on the obtained energy and the expecta- 
LIUII values; lor eaampir, nyperviriai ineory gives tile fx _ : . _ _ . . I  ..... c.. ~ I .  L . . _ - - . I _ : . I  . I ~ - - - .  -: .... .L. , ~ ~ ? . N \  > : ~ ~ ~ _ I ~ ~  

) uirectiy. 

4. Results and discussion 

In the present work we have studied the one-dimensional potentials (1)-(3) over wide 
ranges of parameters ( g , A , Z 2 ) ,  various state numbers and high indices ( 2 N =  
2 , 4 , .  . . ,20) of the perturbation, demonstrating that accurate energies and also expecta- 
tion values such as ( x Z N )  can be calculated without storing explicit values of the 
wavefunction '4'. 

The energy eigenvalues of the generalized anharmonic oscillator defined by potential 
(1) have been calculated for various values of A. Table 1 t gives the values of the ground 
n-nm:ne A f  +ha m-h---.,...:~ -c..:tlm+,.- I I  hr - L P I n \  +---..,:.L-~..-~~ ,.r L In 1 c L c 
C L . " L 6 ' L ' "  "L L l l r  PI.IIPI.I.I".LIC "DC,IIP,"L ,A'. - Y, ", . . . , A", ,"I W l Y C  " L l ~ b J  "1 n \"., - n - 
50 000) and for p = 1 , O .  We have computed 10 eigenvalues in this range. The results 
obtained by the present method are compared with those reported by Banerjee (1978) 
and Schiffrer and Stanzial (1985), the agreement between them and our results being 
very good. Also, we did some checks for our results by applying the power series 
method for 2N = 6 , .  , . , 18,20, yielding eigenvalues agreeing to 16 digits. As can be 

The energies quoted in table 1 agree nearly to all the number of digits given with those 
obtained by Banerjee (1978) and Schiffrer and Stanzial (1985). 

From the listed numerical results in table 1, we can study the crossing of the levels 
EENO(A) as a function of A. The crossing points between !he levels EENO(A) were 
located by finding these eigenvalues for various A. From our results we observed the 
order of levels, 

E'(h)  < E 6 ( A )  < /!'(A)< E"(h) < E"(A) < EI4(A) < E 1 6 ( h ) <  E ' * ( A ) <  E2'(h)  

for small values of A ( A  = 0 .1 ,1 , ,  . . , 5 ) ,  but for large values of A ( A  = 10,50,. . . ,50 000) 
we observed the reversed order 

seeI? rrnm these ca!cu!z!io"s, !he zccurzcy of ocr resu!ts is arocnd 15 significan! digits. 

E4(A)> E 6 ( A ) > E ' ( h ) > E 1 O ( A ) >  E'2(A)>E' ' (A)>Ei6(A)~ E"((A)>E2'(A). 

The crossings between energy levels were discussed and analysed analytically by Bender 
(1969) and Simon (1970). Also, Banerjee (1978) has studied the energy level crossings 
with extensive numerical calculations. It seems from our eigenvalue results for E 2 N ( A )  

t Tables 2-9 of this paper have been deposited in the British Library Supplementary Publications Scheme, 
I ~~ ~.. -. 
"YLYmrrn J u r I " " Y 0 .  



2.20572326959563 2.11454462194213 

0. I 

l 

5 
IO 
50 
100 
500 

7.734402038139668 

I .2338889706082701 0.8848JI91221h169[1.2~1~25599507269~0.98ll796~2247~~S' 
1.546263512572316 1.298R437U~67R5~1'1.59799049927599i~l.0837fil4~~14l757 
1.546263512S72346 1.2Y884170067b521 1.5YiJbO49Y21SY9: 1.3637614a514I757 
1.d90504964852582 1.698446584882680 1.904581416085660 1.7162923979766iO 
2.078302786974126 I.9UG441832611475 Z.U660Y5U16J76872 I.8!l49JU43YO04090, 
2.625542516665687 2.492Y7865i3M600> 2.521d1434dl>ilUd 2.5d4~n3554015410 
2 . 9 1 6 4 4 2 2 6 9 3 5 R 7 0 ~ ~ 2 . 7 9 8 2 7 3 9 2 5 ~ 7 1 l 9 5  2.757119HUOS9847fi 2 . 8 : ~ 0 0 1 1 2 U 2 1 0 1 6 3 9  
3.749860472753474 3 65919224163742b 3.412622121439136 3.313641834873087 

- - - - - - - - - - - - - - - - - - - - - - - - 

IW 1 

I O 9  I 4,18815923409366fi14: 10730441 87061 13' 3. 748294589104394, 3.658657201954226 I 

0.1 
1 
5 
10 
50 
100 

1.166051107940292 
1.127982665235992 

2.U797847627251541 
2.389407087n44083 
2.541227162797541 

1.2065ti1190366403 1.513551985259983 1.265776428650721 
1,518970543436885 1.763848060090803 1.560508342924665 

1.963339575048171'1.784211574013667 1.983057870600219 1.806378718736560 
I.YI22706168YY49U 2.090092595021987 1 . 9 2 3 U R 7 6 2 2 4 4 6 U 1 5  
~.~461n9290920753 2.371139171663949 2.22698818756270'3 
2.40740607~142017 2.50736J140468163 2.371833925451716 

Table 1. The eigenvalues of the ground State for H = P'+ !LX'+AX'~; the results without 
an underline are the present calculations, and those with continuous lines and cut lines 
correspond to [31 and 17.41 respectively. The empty spaces mean the corresponding results 
are not reponed. 
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that the crossing occurs approximately at  the same value ( A = 5 )  for various indices 
2N. It is noteworthy that the WKB formula, which can be expressed as 

(34) 
EZ,N(A)=A(N)(~)I/(N+I) I 2 N I ( N + l )  ( n  +I) 

with 

implies such crossings, and predicts the correct order of levels in the large-A limit. For 
two anharmonic oscillator specified by N, and N2 (N,  < N2) the WKB condition for 
crossing of Ei"l(A) and EtN>(A) is 

A( Nl)(hc.o.s)'/(N,+l)(n + f ) 2 N ~ I ( N ~ + ' )  = A( N,)(A,,,,,)'""+l)(n + f ) 2 N 2 / ( N 2 + l ) .  (36) 

We wish to stress that the finite difference method works very well for any value of 
the index ( 2 N  = 4,6, .  . . , 20), and has obvious advantages over the perturbative renor- 
malized series method (Witwit 1989), which can only handle the values 2 N  = 4, 6 ,s .  
For 2 N  > 12 we have not found numerical results in the literature. Our method is able 
to deal with perturbations that other methods cannot handle due to numerical dificul- 
ties; for example, the cases 2 N =  14, 16, 18, 20. In the limit 2 N + m  the potential 
becomes a square-well potential and our methods should allow this limit to be studied. 

In  the present work we applied the finite difference method to calculate the energy 
eigenvalues for polynomial perturbations as given by equation ( 1 )  for 0 S A 2 N S  lo6, 
2 N  = 2,4,6,8, 10, and different state numbers n. The results listed in tables 2-4 show 
that the finite difference method works extremely well for potential (1) with polynomial 
perturbation. Our results appear to show that the perturbation term A4x4 is the more 
effective one to contribute to the value of the perturbed energy, with contributions of 
the other terms of the perturbation being smaller. We checked our listed results by 
applying the power series and renormalized series methods; the results produced by 
these methods agree quite well with those given by the finite difference method and 
this agreement confirms that our results are accurate in the absence of other reported 
results in the literature. 

The energies E - ,  E,  and the expectation values for ( x Z N )  ( 2 N = 2 , 4 )  for state 
numberO~n~10andforA=0.1 ,1 ,10 ,100wi th thevalue~=lO~ 'havebeenca lcu la ted  
by using the finite difference method and the results are listed in table 5. This value 
of E seems appropriate to give 10-digit accuracy. We checked some of our results 
which are given in table 5 by using the power series and the renormalized series 
methods, which give the same accuracy as that achieved by the finite difference method. 

We calculated the energy levels of a double-well potential given by equation (2) 
for various values of Z', 2N, n. We compared our results with those produced by 
Balsa er al (1983) and Fkrnandez ef al (1985); the agreement between the results is 
very good. It is clear from table 6 that there is agreement between our results and the 
results of Fernandez et a /  (1985) to about 16 digits and the results of Balsa el al (1983) 
to about 12 digits. Also, we have calculated the energy levels of potential (2) for various 
values of parameters ( 2 N  =4;  Z2 = 100,200; O S  1 0 s  loo), and the results are listed 
in table 6. We have observed good agreement between these results and results yielded 
by the renormalized perturbation series (Witwit 1989). In  the present work we have 
not only considered 2 N = 4 ,  but have extended the work to higher powers ( 2 N =  
6,8, 10, 12). We list in table 7 the results for the ground state for 1 0 s  Z ' S  5000. It is 
clear from the listed results that the finite difference method achieves very high accuracy. 
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For potential (3) we have computed the first four even energy eigenvalues for the 
index 2N = 2,4, . . . ,20,  with perturbation parameter values 0.1 s A s 1000 and 0.1 G 
g s 1000. The accuracy of our results in general is more than 12 significant digits, as 
shown in table 8. 

However, it is obvious that for certain limiting parameter values (e.g. g = 0) the 
differential equations corresponding to potential (3) reduce to the differential equations 
of the harmonic oscillator for potential (1). On the other hand, the two potentials ( 1 )  
and (3), with their perturbation terms AxZN,  AxZN/(l+gx2),  respectively, differ only 
by the denominator l+gx2,  so that we expect that the value of the perturbed energy 
corresponding to potential (1) is higher than that for potential (3), and this is confirmed 
by our listed results in tables 1 and 8. In  table 9, comparing the sample from our 
results for V(x)=x2+Ax2N/(1+gx2) for the case 2 N = 2  and for state numbers 
n = 0 ,2 ,4  with those given by Hodgson (1988) and Fack et a1 (1986), we can say that 
the accuracy of our listed results is very good in comparison with their results. For 
higher values (2N = 4 ,6 ,8 , .  . . , 18,20) we are unable to find any results in the literature. 

If we study the energy level crossings for the type of perturbations given by potential 
(3), the picture is more complicated than that for potential ( 1 )  because there are two 
perturbation parameters (g, A). Many energy levels have been calculated ( n  = 0,2,4,6) .  
Briefly, we have seen from our results that some energy eigenvalues for various values 
of g and A decrease or increase with increasing index (ZN = 2.4 , .  . . ,20). For example, 
at g = A = 0.1 the energy eigenvalues increase as 2N increases, as is clear form our 
listed results in table 8. The ordering of the eigenvalues can be expressed as below: 

€:(A) c €:(A) < €:(A) < E ~ , ( A ) < E : ( A ) <  E ' . ~ ( A ) < E : ( A )  < < E:(A) 

where n = 0,2,4,6 and g = A =0.1. With another set of values of the perturbation 
parameters g and A the order of levels have a different behaviour, as indicated by the 
listed results in table 8. 

The numerical results obtained show that the finite difference method produces 
accurate energy values and expectation values when used in the shooting mode, and 
represents an effective alterative to the standard matrix diagonalization methods. 
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