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- Abstract. The energy levels of the Schridinger equation for the potentials V(x)=
Tonaz Az V(x)=-Z%0x +x™  and  V(x)=xP+Ax*V/(1+gx?), with 2N =
4,6,8,...,18,20, have been calculated by using a finite difference method for various
values of A and the quantum number a. The obtained results are compared with previousty
available results,

1. Introduction

The aim of this paper is to calculate the eigenvalues for various forms of potential in
one dimension by using finite difference methods. The potentials considered are

20
Vix)= ¥ A 2N =4,6,8,10,...,18,20 (1)
ZN=2
V(x)=—-Z’x*+x™ 2N =4,6,8,10,12 (2)
V(x)=x"+Ax™ /(14 gx7) IN =4,6,8,10,...,18,20. (3)

The study of the quantum mechanics of the anharmonic oscillator is of considerable
interest from both physical and mathematical points of view, and a variety of techniques
have been employed to calculate energy eigenvalues. The one-dimensional anharmonic
oscillator with the potential given by equation (1) has been studied intensively in the
past by various authors using several powerful methods. The most studied system of
this kind is the quartic anharmonic oscillator (2N =4), Bender and Wu {1969) calcu-
lated 75 terms of the ground state energy series. Simon (1970) studied the analytic
properties of the series and its Padé approximants. Banerjee (1978) calculated energy
levels for 2N =4, 6, 8 and 107° < A =4 x 10* for various state numbers n. Schiffrer and
first excited state for 2N =6, 8,10, 12 and 107%= A < 10° by using a gradient method.
Killingbeck (1979, 1987a, b, 1988} presented several perturbative and non-perturbative
numerical methods which gave results of good accuracy. Witwit (1989) applied renor-
malized series and power series methods for different values of A, 2N, n and obtained
results of high accuracy.

The anharmonic oscillator (1) of the type V(x)=3%n_, A,nx>" can serve as a
useful model in certain situations of physical interest. It has been used in calculations
of the vibrational spectra of molecules (Lister et al 1978) and in a description of the
behaviour of a *He-*He mixture and of metamagnets near the tricritical point (Carvalho
1977). Flessas (1979) and Flessas and Das (1980) have presented some exact solutions,
valid for particular A, values, including positive and negative values of A,. Chaudhuri

and Mukherjee (1984) have found a class of exact even and odd parity soiutions to
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the Schrodinger equation for the same potential when A,, A4, A, satisfy some specific
relations, In the present work we tackle the problem in its full complexity, calculating
the eigenvalues for different values of A,,2N =2, 4,6, 8, 10 with high accuracy.

The solution of the Schridinger equation for the asymmetric double-minimum
potential given by equation (2) would be interesting and has not yet received much
attention. The most studied system of this kind is the quartic double-well potential
(2N =4}, For instance, Balsa er al (1983) used a matrix diagonalization method with
an appropriate scaled harmonic basis to compute the energy eigenvalues for 2N =4,
0= Z*=100 and 0= n=<21. Quick and Miller (1984) treated the case 2N =4, Z*>=50
and 0=n<79, also using matrix diagonalization to calculate some energy levels.
Fernandez et al (1985) applied a simple iterative solution of the Schrodinger equation
for a double-well potential and produced results with very good accuracy for two state
numbers (n=0, 1) and different values of Z {0=<Z?=10). Killingbeck (1988) used
finite difference calculations involving the expectation values of Boolean functions,
which are shown to yield detailed information about the properties of the energy levels
and eigenfunctions for the double-well potential. Witwit (1989) used perturbative and
non-perturbative methods to calculate the energy levels for wide ranges of parameters
Z?, 2N and state number n.

There are.a variety of techniques which have been employed to calculate and to
investigate the eigenvalue problems for potential (3). Most of the calculations have
been devoted to the potential given by eguation (3) for 2N = 2. However, as far as we
know the other power indices (2N =4,6,8, ..., 18,20) have not been widely studied.
We have been unable to find a reference in the literature dealing with the other types
of potentials.

_ The potential given by equation (3} for 2N =2 has recently been studied by many
authors using different techniques. Mitra (1978) calculated the ground state and first
two excited states using the Rayleigh-Ritz variational method in combination with a
Givens-Householder matrix eigenvalue algorithm. Galicia and Killingbeck (1979) used
the finite difference method to compute the energy eigenvalues for the three lowest
even-parity states. Fack and Vanden Berghe (1985, 1986) and Fack et al (1987} used
the finite difference method in combination with matrix diagonalization for a numerical
computation. Fack er al {(1986) applied an operator method based upon the SO(1, 2)
dynamical group and gave very accurate results for different values of A, g and the
state number. Hodgson (1988) applied an analytic continuation technique with a Taylor
series t0 produce eigenvalues for wide ranges of perturbation parameters (0.1=g,
A < 10%) and state number n, obtaining results of high accuracy. A set of exact solutions
has been found by Flessas (1981) under the conditions A <0 and A = A(g). Whitehead
et al (1982) have proved the existence of a class of exact eigenvalues, when certain
algebraic relations between A and g hold. Gallas (1988) has shown an exact analytical
eigenfunction for the potential when the relationship A = —(6g*+4g) holds. The interest
in this type of potential arises in several areas and these have been summarized by
Mitra (1978). In particular, this type of potential occurs when considering models in
laser theory.

2. Formulation of the finite difference method

Recent times have seen the development of various non-periurbative methods of
computing energy eigenvalues. Such methods are necessary since the perturbative
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methods provide insufficient information about accuracy and give convergence difficul-
ties. Witwit (1989) has applied non-perturbative methods such as finite difference and
power series methods to various eigenvalue calculations, using cross-checking of the
results from various methods to establish confidence in the accuracy of the methods.
The theory of the finite difference approach to find eigenvalues for the Schrédinger
equation

d2
(—@+ V(x)—E)‘-If(x)=0 (4)

with potentials given by equations (1)-{3) usually starts from the central difference
operator, which can be expressed as

§ = ghP/2_g—hD/2
=2sinh(hD/2} (5)
where
d
T dx (6)

and h is the strip width for the numerical integration. From expression (5) it is easy
to derive the relation which is used by Fack and Vanden Berghe (1985) to calculate
their results. From equation (5) we obtain the following relation after squaring both
sides of the expression:

4 é
D? =Psinh_2(5). (7
From equation (7) it is easy to obtain the result
54 8% &t
WD =5 -T 4
12 90 2560 )

The operator expansion given by equation (8) is the one applied by Fack and Venden
Berghe (1985) to derive the formulae used in their approach. If we square both sides
of equation (5) and multiply by the wavefunction ¢(x), then equation (5) takes the form

82y(x) =4 sinh*(hD/2)(x) = 2[cosh(hD) — 1]¢(x). (9
If we expand the cosh(hD) function, equation (9) takes the form
8 (x) =D W(x)+5h* D" (x) + 55 D (¥(x}. ... (10)

In order to use the Schrédinger equation (4} in equation (10), we divide equation (10)
by k7, so that equation (10) becomes

h726%(x) = D*W(x) +{5sh*D*W(x) +555h* DW(x) .. .. (11)
Replacing D? by V{x)—E in equation (11) gives
A28 (x) = (V(x)— EYW(x)+{sh’D*V(x)+35h D (x) . ... (12)

If we expand the wavefunctions ¥{x+ h) and ¥(x — h) by using Taylor series we obtain
Y(x+h) =W(x)+hDW(x)+ R D*W(x)+ 41 D'V (x)+ 50 DV (x)
+ 1i5h° DAY (x) + 555 DO (x) (13)
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W(x=h)=¥(x)~hDW¥(x)+1h>D*W(x) - th° D*¥(x) + 5k D*¥(x)
—1i5h° D (x) +755h° DO (x). (14)
Adding equations (13) and (14) and using equation (1) we obtain
B (x)=W(x+h)+¥(x—h)-2¥(x)
= RPD™(x) +5h* D (x) + 5560 " DOV (x)+. . .. {15)
Equation (12) differs from the Schrodinger equation in the form D*¥(x)=
(V(x) ~ E)¥(x) by having perturbing terms V,=1;h*D*¥(x) and V,=555h" D¥(x).

The first term produces an energy shift and this shift would be the expectation value

+o0

AE, = -I.H0 ¥(x)V,¥(x) dx = {5h* J. T (x) D" (x) dx. (16)

—c —c0

The integral can easily be evaluated by parts to vield
w2h((E - V) =%k (V(x)— E)? (17}

which means that the local operator (V(x)— E)? gives the same effect on the energy
as the operator D*. The calculation of the effect of V,=35h* D*¥(x) is more difficult
than the perturbation V) term

+oo

AE2=§%ah4j. Y(x)D¥(x) dx. (18)
However, for Dirichlet boundary conditions and non-singular potential the term AE,
can be expressed as

AE, = V,=55h*(V(x)— EY*+36R (DV{x))". (19)

Our results show that the term involving h* D® is not easy. However, for our calculations

we used a very small value of h (h=10"*) for which the higher terms A*~ D*N*V

(N =2,4,...)in the expansion do not make any appreciable difference to the accuracy.
If we use the quantity S{x) which is defined as

Y(x+h)=(1+hS(x)H¥(x) (20)

in equation (15) and combine equations (9) and (15), the following equation is obtained:
S(x—h 2

S(x)=-L—)———+ [cosh(h|D])—1] (21)

1+ 12S(x—h) h*
where D=+ V(x)—E. If D <0, equation (21) takes the form

$(x) ‘—‘%%*‘%[COS(MDD_I]- (22)
For even states we have

Y(—h)=Y(h) (23)
which leads to the starting conditions

5(0)=3(V(0)—E). (24)

To apply equations (21) and (22) we need some initial value for S(x) and can then
calculate successive S(x) values along the x-axis, with some test energy E. The
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wavefanciion ¥{x) s calcuiated using equation {21} or equation (22} for two trial
energies E, and E,. We suppose that E,> E,, so that (¥,) has its nodes earlier than
¥,. Then the calculation of the projected energy is given as

Eb_Ea

e R (25)

Ep = Eb
E, is actually a function of x; it is the interpelated energy which would have given
W(x)=0. As x increases, however, E, settles down to a limiting value, provided that
E, — E, is not too large. This limiting energy corresponds to the boundary condition
W(co)=0. The true energy is related to the calculated energies for varying strip widths
h by a formula of the type

E(h)=E,+ E,+h*E,+.... (26)

The resuits for E as obtained using three values (h, 2h, 4h) can be treated by the
Richardson extrapolation process, giving the results

Ey=35(64E(h)—20E(2h)+ E(4h)). (27

Here E(h) is the energy calculated using strip width k and E, is the exact energy (for
h—=0). In the present eigenvalue calculated using strip width h and E, is the exact
energy (for h = 0). In the present eigenvalue calculations, we used the above relations.
The error of the method used here should be smaller when a smaller h (step length)
is used. The wavefunction ¥(x) can be restricted to the region [0, +o¢]. Furthermore,
we shall suppose that the wavefunctions are restricted to obey the Dirichlet boundary
condition ¥{x) =0 at some x-value (x = R). An acceptable R-value will be guessed
numerically. The interval [0, R] is subdivided into equal paris of length h, with x = kh
(k=0,1,2,...,n; nh=R).

3. Expectation value calculations (x*")
In the present paper we have found a further application for the energy eigenvalues

by calculating the expectation values without using wavefunctions. To find expectation
values of the type (x*") for patential (1) for the case 2N =4,

Vix)=x>+ax* (28)
we need to have the eigenfunction ¥(x) for all x if we wish to apply the definition

(x*y = J- P (x)x*N dx. (29)
To find ¥(x) for arbitrary x and for any state number (n=0,1,2,...,9,10), is not

easy. However, Killingbeck {1979) has applied a very simple perturbative numerical
algorithm for the calculation of an expectation value, based on the formula

<x2”):1i£;—E(E(H+éx2N)—E(H—sxz”)). (30)

This algorithm demonstrates that expectation values can be determined by an approach
based on eigenvalue calculations, without the explicit use of wavefunctions. The way
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in which we can calculate is as follows. We do two calculations, to get two E values,
with Fex?" included in the potential:

2 4 N
E.=x"+Ax*+ex? (31)
2 4
E_=x*+ax"—ex? (32)
where £ is a very small number, typically 10 = £ =< 107", The value of (x*") is then
given by
ey _ 1 E.-E
(x*") == (Es—E.). (33)

We have performed various numerical checks on the obtained energy and the expecta-
i ues;

Y S et P R S, _ 12N I
; for exampie, hypervirial theory gives the (x°) direcily.

4. Results and discussion

In the present work we have studied the one-dimensional potentials (1)-(3) over wide
ranges of parameters (g, A, Z%), various state numbers and high indices (2N =
2,4,...,20) of the perturbation, demonstrating that accurate energies and also expecta-
tion values such as (x*™) can be calculated without storing explicit values of the
wavefunction ¥,

The energy eigenvalues of the generalized anharmonic oscillator defined by potential
(1) have been calculated for various values of A. Table 17 gives the values of the ground

anaroiac nftha anha Allatar (N A 2 MY far unida oAl 1= A=
CnETEICs 01 the auuauuulu\.. OSCllLator \41\' =0, 0, ..., 40) 10T WIGE 1a1|5ua of A \u 1=nn~=

50 000) and for w=1,0. We have computed 10 eigenvalues in this range. The results
obtained by the present method are compared with those reported by Banerjee (1978)
and Schiffrer and Stanzial (1985), the agreement between them and our results being
very good. Also, we did some checks for our results by applying the power series
method for 2N =6, .. ., 18, 20, yielding eigenvalues agreeing to 16 digits. As can be

gean from theca r\nh‘nln tinng the acenracy of anr resultc ic aronund 16 cianificant dioits
seenirom i €8¢ CaICU:ations, e accuracy of QuUr resuils is arouna 1o signincany ai1gits,

The energies quoted in table 1 agree nearly to all the number of digits given with those
obiained by Banerjee (1978) and Schiffrer and Stanzial (1985).

From the listed numerical results in table 1, we can study the crossing of the levels
E2Y.(X) as a function of A. The crossing points between the levels EZY (1) were
located by finding these eigenvalues for various A. From our results we observed the
order of levels,

E* A <ESA) < EXA)<EA) < EZ(A)<EY(M<E"(A)<E"(A) < E*Q)

for small values of A (A =0.1,1,. .., 5), but for large values of A (A =10, 50,..., 50 000)
we observed the reversed order

E*A)> E*(A)> EX (M) = E' (M) > E2(A)> EY¥(A)> E"(A)> E®¥(A)> EX¥(A).

The crossings between energy levels were discussed and analysed analytically by Bender
(1969) and Simon (1970). Also, Banerjee (1978) has studied the energy level crossings
with extensive numerical calculations. It seems from our eigenvalue results for E2™ ()

F Tables 2-9 of this paper have been deposited in the British Library Supplementary Publications Scheme,

A QT IDAMAL L
UOLUMEIL U FUU4D.



2N=6 2N=8
S =l u=0 u=l =0
0.1 |1.109087078465584(10.643769728949398[1.168970453245986]0.773440203813966
1.10908707846558 1,16897045324599
t 1.435624619003392011.144802453797053[11.49101989566221 [1.225820113800492
1.43562461900339 [1.144802453797053(1.491019895662205{1.225820113800452
1.912453832222856)1.711878954024485( 1.887487143032062(/1.691300370626301
10 12.205723269595632)2,035778632149334(/2.114644621942129(1.942793953544308
2.20572326959563 2.11454462154213
50 [3.159021201059654]3.044199096420710(2.806065089316286(2.6805304438125683
100 [[3.71697472920862013.620183224948363/3.188654346492268(3.079120911326986
3.71697472920862 3.188654346492268
500 [5.47837909046279115.413436573224043)4.328012380250563)\4.248354452583329
107 [|6.492350132329672([6.437697289493980[4,949487440032743/4.880077771126800
. [6:48235013232967 4,94948744003274
107 f11.47B79804226454(11.44802453797053]7.778272214311099{(7.734402038139668
11,4787980422645 7.77827221431110
5x18]17.13937586886189[17.11878954024485 10.70319738012488)10.67138390568737
X 2N=10 ZN=12
M=l =0 u=1 L=0
0.1 [1.233888970608270[0.884891912218169[1.297825599507269[0.981479602247295
; [1-5462635126723461.298843700678521'1.597990499275997|1.363761485141757
1.546263512572346((1.2988437006785211.597590499275997(1.363761485141757
5 1.890504964852582|(1.658446584882680 1. 904581416085660(1.716292397976640
10 [2.078302786974826[1.906441832611472(2.066095018976872)1.894940439004090
50 [2.825342516665687(2.492978653386003(2,521614348137108)2.384780554015410
100 [2.9164422693568709[/2.798273925671195(2.757179800598476(2.633011202101639
500 |3.749860472753474(3.6591922416374283.412622122439136]3.,313641834873087
16° §4.188159234093666]4.107304418706113]3.748294589104394)3.658557201954226
Lo* |6-083894977292836/6,028698417677723{5,148272347405043(5,083548748021790
6.083804977292836(6,028698417677723/6.148272347406043(/5.083648748021730
5%1817.925731446516450(7,883490702879206,6.4491144728362066.397640764921995
5 2N=14 2N=16
u=1 u=0 u=1 H=0
0.1 [1.358260057208969]1.065928788384754((1.414362993380629(1.140391627412878
1 1.64542730166753011.4214388584484289(1.688644355408802((1.472872424370881
6 1.923094061080720[|1.738198785933759((1.943134116363347((1.7612680249421046
10 ||2.065584866993021(|1.895519216970127[2.071102069825460]1.902287886305871
50 12.457745391569692[12.317925334402937(2.416622648346604(2.274780916137083
100 |2.656152748781866[2.527715500907106(/2,588434696119420((2.456899282320219
500 113.196353882040352|13.0910031115806563.048304497176280|/2.937992530219101
107 |3.467464357512808(3.370762794871078013,275439884385238[3.173207445055988
10% [4.567664896385973(4.494984426699328[4.177691914410590(4.098355012684797
Bx1005.556160251167479||5.496667189690124[4.0967281266904783]4.900866917948242
X 2N=18 ZN=20
=1 =0 M=l u=0
0.1 [1.486051107940292(1.206561190366403(1.513551983259983)1.265776428650721
1 1.727982665235992[1.518970543436885[1.762848060090803)1.560508342924665
5 1.963339575048171]/1.7842115743136671,983057870600219[1.806378778736560
10 l2.079784762725154]1.912270616899490(2.090092595021987]1,923867622446815
50 [2.389407087844083]2.246189290020753]2.371139171663949)2.226988187562709
100 [|2.541227162797541[2.407406073842077(2.507363140468163]2.371833925451716
500 |2.942010458371235{2.827784778040057[2,862914498435694)2.745535125812682
10” [3.1374276150949501{3.030744682867415]3,03441648463072302.924107721491224
10 [3.500417102469582]3.815481497921844(3.654653961275296)3,.604976670217825
sx1804.554124076231136/4.481726844460848]4.250526051587301[4.172969266359273

Table 1. The eigenvalues of the ground state for H = P?+ px®+ Ax?™; the results without
an underline are the present calculations, and those with continuous lines and cut lines
correspond to [3] and [24] respectively. The empty spaces mean the corresponding results
are not reported.
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that the crossing occurs approximately at the same value (A ==5) for various indices
2N. It is noteworthy that the wkp formula, which can be expressed as

with
_{mNTG+1/2N)\ >V
AN) ‘( TOF(1/2N) ) (33)

implies such crossings, and predicts the correct order of levels in the large-A limit. For
two anharmonic oscillator specified by N, and N, (N; < N,) the wks condition for
crossing of EZ™(a) and E2™(A) is

AN Rorose) /M +3)* D = AN Agrgee) /Mt (52N (01, (36)

We wish to stress that the finite difference method works very well for any value of
the index (2N =4, 6, ..., 20), and has obvious advantages over the perturbative renor-
matized series method (Witwit 1989), which can only handle the values 2N =4, 6, 8.
For 2N > 12 we have not found numericai results in the literature. Our method is able
to deal with perturbations that other methods cannot handle due to numerical difficul-
ties; for example, the cases 2N =14, 16, 18, 20. In the limit 2N - the potential
becomes a square-well potential and our methods should aliow this limit to be studied.

In the present work we applied the finite difference method to calculate the energy
eigenvalues for polynomial perturbations as given by equation (1) for 0<< A, < 10°,
2N=2,4,6,8, 10, and different state numbers n. The results listed in tables 2-4 show
that the finite difference method works extremely well for potential (1) with polynomial
perturbation. Qur resuits appear to show that the perturbation term A,x* is the more
effective one to contribute to the value of the perturbed energy, with contributions of
the other terms of the perturbation being smaller. We checked our listed results by
applying the power series and renormalized series methods; the results produced by
these methods agree quite well with those given by the finite difference method and
this agreement confirms that our results are accurate in the absence of other reported
results in the literature,

The energies E_, E, and the expectation values for {(x*™) (2N =2, 4) for state
number 0= n =< 10and for A = 0.1, 1, 10, 100 with the value £ = 1072 have been calculated
by using the finite difference method and the results are tisted in table 5. This value
of € seems appropriate to give 10-digit accuracy. We checked some of our results
which are given in table 5 by using the power series and the renormalized series
methods, which give the same accuracy as that achieved by the finite difference method.

We calculated the energy levels of a double-well potential given by equation (2)
for various values of Z2, 2N, n. We compared our results with those produced by
Balsa et al (1983) and Fernandez ef al (1985); the agreement between the results is
very good. It is clear from table 6 that there is agreement between our results and the
results of Fernandez et al (1985) to about 16 digits and the results of Balsa et al (1983)
to about 12 digits. Also, we have calculated the energy levels of potential {2) for various
values of parameters (2N =4; Z7 =100, 200; 0= 10=100), and the results are listed
in table 6. We have observed good agreement between these results and results yielded
by the renormalized perturbation series (Witwit 1989}, In the present work we have
not only considered 2N =4, but have extended the work te higher powers (2N =
6,8, 10, 12). We list in table 7 the results for the ground state for 10< Z°=< 5000. It is
clear from the listed results that the finite difference method achieves very high accuracy.
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For potential (3) we have computed the first four even energy eigenvalues for the
index 2N =2,4, ...,20, with perturbation parameter values 0.1 <\ <1000 and 0.1=
g = 1000. The accuracy of our results in general is more than 12 significant digits, as
shown in table 8.

However, it is obvious that for certain limiting parameter values (e.g. g =0) the
differential equations corresponding to potential (3) reduce to the differential equations
of the harmonic oscillator for potential (1). On the other hand, the two potentials (1)
and (3}, with their perturbation terms Ax?"™, Ax>™/(1+ gx?), respectively, differ only
by the denominator 1+ gx?, so that we expect that the value of the perturbed energy
corresponding to potential (1) is higher than that for potential (3}, and this is confirmed
by our listed results in tables 1 and 8. In table 9, comparing the sample from our
results for V(x)=x2+Ax*V/(1+gx?) for the case 2N =2 and for state numbers
n=0,2, 4 with those given by Hodgson (1988) and Fack et al {1986), we can say that
the accuracy of our listed results is very good in comparison with their results. For
highervalues (2N =4,6,8, ..., 18, 20) we are unable to find any results in the literature.

If we study the energy level crossings for the type of perturbations given by potential
(3), the picture is more complicated than that for potential (1) because there are two
perturbation parameters (g, A). Many energy levels have been calculated (n =0, 2, 4, 6).
Briefly, we have seen from our results that some energy eigenvalues for various values
of g and A decrease or increase with increasing index (2N =2, 4, ..., 20). For example,
at g=A=10.1 the energy eigenvalues increase as 2N increases, as is clear form our
listed results in table 8. The ordering of the eigenvalues can be expressed as below:

EXMN<EZA)<ES(AN)<EWAM<EXAY<EFQA)<EMA)<EFA)<EV(A)

where n=0,2,4,6 and g=A=0.1. With another set of values of the perturbation
parameters g and A the order of levels have a different behaviour, as indicated by the
listed results in table 8.

The numerical results obtained show that the finite difference method produces
accurate energy values and expectation values when used in the shooting mode, and
represents an effective alterative to the standard matrix diagonalization methods.
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